Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Microscale machines are able to perform a number of tasks like micromanipulation, drug‐delivery, and noninvasive surgery. In particular, microscale polymer machines that can perform intelligent work for manipulation or transport, adaptive locomotion, or sensing are in‐demand. To achieve this goal, shape‐morphing smart polymers like hydrogels, liquid crystalline polymers, and other smart polymers are of great interest. Structures fabricated by these materials undergo mechanical motion under stimulation such as temperature, pH, light, and so on. The use of these materials renders microscale machines that undergo complex stimuli‐responsive transformation such as from planar to 3D by combining spatial design like introducing in‐plane or out‐plane differences. During the past decade, many techniques have been developed or adopted for fabricating structures with smart polymers including microfabrication methods and the well‐known milestone of 4D printing, starting in 2013. In this review, the existing or potential active smart polymers that could be used to fabricate active microscale machines to accomplish complex tasks are summarized.more » « less
-
This review demonstrates that 4D printing constitutes a key technology to enable significant advances in microrobotics. Unlike traditional microfabrication techniques, 4D printing provides higher versatility, more sophisticated designs, and a wide range of sensing and actuation possibilities, opening wide new avenues for the next generation of microrobots. It brings disruptive solutions in terms of variety of stimuli, workspaces, motion complexities, response time, function execution, and genuinely 3D microrobots. This review brings to light how soft and smart materials directly printed in 3D are particularly well suited for microrobotics requirements. This review gives an overview of 4D printing in microrobotics, highlighting advanced microrobotics requirements, fabrication methods, used smart materials, activation techniques, recent advances in the microrobotics field, and emerging opportunities.more » « less
-
The implementation of two‐photon polymerization (TPP) in the microrobotics community has permitted the fabrication of complex 3D structures at the microscale, creating novel platforms with potential biomedical applications for minimizing procedure invasiveness and diagnosis accuracy. Although advanced functionalities for manipulation and drug delivery tasks have been explored, one remaining challenge is achieving improved visualization, identification, and accurate closed‐loop control of microscale robots. To enable this, distinguishable identifying and trackable features must be included on the microrobot. Toward this end, the construction of micro‐ and nanoscale patterns using TPP is demonstrated for the first time on microrobot surfaces with the intent of mimicking color‐expressing nanostructures present on beetles or butterflies. The patterns provide identification and tracking targets due to their vivid color expression under visible light. Helical and rectangular microrobots are designed with the topical patterns and further functionalized with magnetic materials to be externally actuated by magnetic fields. Vision‐based tracking of a 20 μm × 30 μm colored feature on a 100 μm‐long helical microrobot using a fixed angular position light source during microrobotic motion is shown. This versatile structural color patterning approach shows great potential for the visual differentiation of various microrobots and tracking for improved closed‐loop control.more » « less
-
Abstract In recent years, magnetism has gained an enormous amount of interest among researchers for actuating different sizes and types of bio/soft robots, which can be via an electromagnetic‐coil system, or a system of moving permanent magnets. Different actuation strategies are used in robots with magnetic actuation having a number of advantages in possible realization of microscale robots such as bioinspired microrobots, tetherless microrobots, cellular microrobots, or even normal size soft robots such as electromagnetic soft robots and medical robots. This review provides a summary of recent research in magnetically actuated bio/soft robots, discussing fabrication processes and actuation methods together with relevant applications in biomedical area and discusses future prospects of this way of actuation for possible improvements in performance of different types of bio/soft robots.more » « less
An official website of the United States government
